正常调用
#调用chatmodels,以openai为例
from langchain.chat_models import ChatOpenAI
from langchain.schema.messages import HumanMessage,AIMessage
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")
chat = ChatOpenAI(
    model="gpt-4",
    temperature=0,
    openai_api_key = api_key,
    openai_api_base = api_base
)
messages = [
    AIMessage(role="system",content="你好,我是tomie!"),
    HumanMessage(role="user",content="你好tomie,我是狗剩!"),
    AIMessage(role="system",content="认识你很高兴!"),
    HumanMessage(role="user",content="你知道我叫什么吗?")
]
response = chat.invoke(messages)
print(response)
#print(chat.predict("你好"))
流式调用
#LLM类大模型的流式输出方法
from langchain.llms import OpenAI
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")
#构造一个llm
llm = OpenAI(
    model = "gpt-3.5-turbo-instruct",
    temperature=0,
    openai_api_key = api_key,
    openai_api_base = api_base,
    max_tokens=512,
)
for chunk in llm.stream("写一首关于秋天的诗歌"):
    print(chunk,end="",flush=False)
追踪token
#LLM的toekn追踪
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")
#构造一个llm
llm = OpenAI(
    model = "gpt-3.5-turbo-instruct",
    temperature=0,
    openai_api_key = api_key,
    openai_api_base = api_base,
    max_tokens=512,
)
with get_openai_callback() as cb:
    result = llm.invoke("给我讲一个笑话")
    print(result)
    print(cb)
自定义输出
- 输出函数参数
 - 输出json
 - 输出List
 - 输出日期
 
#讲笑话机器人:希望每次根据指令,可以输出一个这样的笑话(小明是怎么死的?笨死的)
from langchain.llms import  OpenAI
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain.pydantic_v1 import BaseModel,Field,validator
from typing import  List
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")
#构造LLM
model = OpenAI(
    model = "gpt-3.5-turbo-instruct",
    temperature=0,
    openai_api_key = api_key,
    openai_api_base = api_base,
)
#定义个数据模型,用来描述最终的实例结构
class Joke(BaseModel):
    setup:str = Field(description="设置笑话的问题")
    punchline:str = Field(description="回答笑话的答案")
    #验证问题是否符合要求
    @validator("setup")
    def question_mark(cls,field):
        if field[-1] != "?":
            raise ValueError("不符合预期的问题格式!")
        return field
#将Joke数据模型传入
parser = PydanticOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
    template = "回答用户的输入.\n{format_instructions}\n{query}\n",
    input_variables = ["query"],
    partial_variables = {"format_instructions":parser.get_format_instructions()}
)
prompt_and_model = prompt | model
out_put = prompt_and_model.invoke({"query":"给我讲一个笑话"})
print("out_put:",out_put)
parser.invoke(out_put)
输出list
#LLM的输出格式化成python list形式,类似['a','b','c']
from langchain.output_parsers import  CommaSeparatedListOutputParser
from langchain.prompts import  PromptTemplate
from langchain.llms import OpenAI
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")
#构造LLM
model = OpenAI(
    model = "gpt-3.5-turbo-instruct",
    temperature=0,
    openai_api_key = api_key,
    openai_api_base = api_base,
)
parser = CommaSeparatedListOutputParser()
prompt = PromptTemplate(
    template = "列出5个{subject}.\n{format_instructions}",
    input_variables = ["subject"],
    partial_variables = {"format_instructions":parser.get_format_instructions()}
)
_input = prompt.format(subject="常见的小狗的名字")
output = model(_input)
print(output)
#格式化
parser.parse(output)